PROCAINE DERIVED CARBON DOTS ANTICANCER ZHAO 2020

Abstract


Aim: Procaine-derived carbon dots, termed P-dots, expectedly offer both fluorescent biomarker function and anticancer activity. Materials & methods: P-dots were synthesized by condensing procaine, citric acid and ethylenediamine via hydrothermal synthesis and characterized by transmission electron microscopy, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy. The cellular uptake behavior and the bioimaging performance of P-dots were assessed by confocal laser scanning microscopy. Their antitumor activity was evaluated using the CCK-8 assays and in vivo antitumor experiments, and the underlying mechanism was evaluated by flow cytometry and western blotting. Results: P-dots exhibited excellent luminescence properties suitable for bioimaging and considerable anticancer activity associated with caspase-3-related cell apoptosis. Conclusion: The synthesized procaine-derived carbon dots presented a dual function consisting of bioimaging and anticancer activity, which may enable their implementation as safe and effective clinical nanotherapeutics.

Keywords
anticancer activity • apoptosis • bioimaging • carbon dots • flow cytometry • fluorescence • hydrothermal synthesis method • nanomedicines • procaine • xenograft mouse tumor model